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Physics Translated from Doklady Akademii Nauk SSSR, 88, 773 (1953) 

Equations of Motion and Field Equations in the Five- 

Dimensional Unitary Theory of Relativity 

R. S. Ingarden 

In the general theory of relativity there are  two different methods of 
deriving equations of motion  from the  field equations:   on the one hand,   the 
method of Einstein and Infeld  '     and,  on the other,   the method of Fock.   ' 
The difference between these two methods lies in certain differences in the 
views of these authors on the very essence of the general  theory of relativity. 
Einstein and Infeld consider that  " all attempts to  represent matter by the 
energy-momentum tensor are unsatisfactory. "      Therefore,   they are concerned 
exclusively with field equations in empty space while representing matter as 
singularities of the field which must have some relatiqn to the elementary 
particles of microphysics.   Fock,  on the contrary,   considers that the general 
theory of relativity is a  theory of gravitation alone which applies only  to 
phenomena on an astronomical scale,   and has no connection with microphysics, 
in which the gravitational  field does not play an essential part.   For this 
reason,   Fock  formulated a  theory of " finite masses" and introduced the 
energy-momentum tensor into the field equations. 

In this paper we shall endeavor to show that these two views can be recon - 
ciled to a certain extent in the  five-dimensional   "unitary" theory of rela- 
tivity.  A new view on the whole problem is thus introduced. 

Let us consider the  five-dimensional Riemannian geometry,   with the metric 

di* = — gvv (xp) dx* dxv 

and the signature   (+,  -,  -,  -, -).  This signature is possible only if the 
metric form is indefinite and the variational principle 

8 \ dz = 0 

is regular. The Greek indices take the values 0, 1, 2, 3, 4, and the Latin 
indices the values 0, 1, 2,   3. 

In order that the coordinates x^  and the tensor components g      may have 
[direct] physical significance, we introduce an " inertial" system of co- 

ordinates, in the sense of Fock, ' i.e., one which: 

(1) The coordinates [sic] are harmonic (independent particular solutions 

of the five-dimensional D'Alembertian equation). This condition is equivalent 
to the coordinate conditions 

C = 0' (1) 

where 

and the index after the comma indicates ordinary differentiation. 
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(2) Ihe coordinate system is " the appropriate space-time coordinate system' 

in the sense of Hubert8 which corresponds to the covariant separation of the 

" time" x0   [sic] from the " space" (* . *2, x°,   **). (We have added condition 

2.) 
(3) At spatial infinity (r = [(x1)2 + (*2)2 + (*V + c2(*4)2]* - °°, where 

c  is the speed of light in vacuo)   for every xQ: 

(a)(dx2)oo = c2 (dx0)2 - (dx1)* - {dtff— (dx3)*— c* {dx*f~ — e^dx»dx\  (2) 

Also the  functions h      = - e    g„„   [sic]  must tend to zero when r — °° in such a 
'flV ßV°flV 

way that the products r/i      remain  finite; 
(b)  Sommerfeld's radiation condition is valid: 

r^m ,Hr^   C  d* 

The conditions 1 to 3 determine the coordinate system to within a five- 
dimensional Lorentz transformation with constant coefficients which preserves 
the form  (2)  at infinity.4 Ihus the problem of the  " general" theory of rela - 
tivity has been reduced by Fock in a certain sense to the problem of the 
" special" theory of relativity,4,8 but in a different sense from the attempt 
by Rosen,9 which seems to us incorrect.     Fock's discovery has great funda- 
mental significance and is especially important for the definition of the 
concept of angular momentum      and for the problem of quantization of fields 
in the general theory of relativity. 

To the coordinate x* we give the physical interpretation of "proper time, " 
and to  the coordinates x1,   x*,   x3  the  interpretation of  " proper space co - 
ordinates. " These concepts,   as will appear below,   can be identified exactly 
with the corresponding concepts of the  (special)   theory of relativity in four 
dimensions  (with the sole difference that in the four-dimensional  theory the 
adjective   "proper" is not used for space coordinates).  We interpret h^ as 
the potentials of the   " unitary  field. " Diese potentials can be grouped, 
according to  the coordinates,   into potentials of the gravitational  field h^ 
and potentials of the   " meso-electromagnetic" field h4i = hi,  hAA = 2/i4. 

Apart from the special interpretations of the coordinates and of the metric 
tensor,   we base the theory on the variational principle,   invariant under 
general  transformations of the coordinates, 

8 (Sa + Sm) = 0, (3) 

where 

is the  " 5-action" of the unitary  field, 

Sm=^LV=gd*x 

is the  " 3-ection" of the sources of the unitary field (" matter"),   ax = 
dx°dx1dx2dxadxA, k is the gravitational constant.  G = G ( g^.  gM„ J  is the 
Lagrangian density of the field, L = L{g       g        ;  qA.  qA    ) is the Lagrangian 
density of matter,  qA = qA{ xP ) {A= 1,   2,...,  s)  are the  '  dynamical quanti- 
ties" which describe the matter. 

We shall Show that it is possible to define the Lagrangian density of matter 
in the  five-dimensional theory of relativity in such a way that the equations 
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of motion follow from the  field equations without any additional assumptions 
concerning matter,  such as equations of state.   In other words,   in the last 
analysis the only remaining dynamical quantities in the theory should be the 
" geometric" entities g    ,   and the variation in  (3)   should be performed with 
respect to  these entities only.   Thus we want the statement that the equations 
of motion  follow from the field equations to be a postulate,  and not a con- 
sequence of the theory   (this postulate could be called the geometrization 
postulate).  The equations of motion would not  follow from the  field equations 
if the Lagrangian density of matter depended on a greater number of dynamical 
variables q.  than  there are arbitrary  functions in the transformations of co- 
ordinates   (s>5).   For it would have been possible to obtain the equations of 
motion merely by varying q.  in  (3)   (s equations  for s functions of q^).   In 
this case,   the equations of motion would have had no connection with the 
field equations resulting from the variation of g      in  (3).  Ch  the other hand, 
the well-known theorem of Noether     "     states that there are as many differen- 
tial  identities  among  the Euler-Lagrange  equations of invariant variation as 
there are arbitrary  functions  in  the  transformation of coordinates   (in our 
case  five).   Since!  depends,   generally  speaking,   on g^  and g^v_ p    (this 
follows  from the invariance of S ),   we can determine the energy-momentum 
tensor of matter by the usual   formula: 

T SL   _   -2     f dV-gL        ldV-gL\     \ 

Constructing G,   as usual,   from the Ricci     tensor R    ,   we obtain Einstein's 
field equations: 

G^v=/?iiv — -2 Rgw = -pr A« (4) 

(R ,= g?vR    ),   from which follow,   as Noether's identities,   the  five equations 

7^ = 0 (5) 

(the index after the semicolon denotes covariant differentiation).   If s =  5, 
then Eq.   (5)   (together with  the boundary conditions and Eqs.    (1)   and   (4), 
determining g    )  will be sufficient,   generally speaking,   to determine qA. 
Therefore,   (5)  will  then be  the equations of motion of matter resulting  from 
the  field-equations   (4). 

In the general  theory of relativity,   one usually employs an energy-momentum 
tensor of matter of the  form 

T„v = (p + e) Uy. ttv + pgvy (6) 

(p  is the pressure,   e the density,  u    the speed of matter)   and 

UllU»= — 1. (7) 

Tensor  (6)  contains one extra  function   (s = 6,   taking  (7)   into account). 
This  is  the source of difficulties which cannot be overcome in four dimensions 
since in the general case it is impossible to eliminate any of these  functions. 
This obstacle forced Einstein and Infeld to abandon the energy-momentum tensor 
and led Fock to limit the application of this  tensor to microphysics,   where 
one can assume the existence of a  thermodynamical equation    of state,   which 
relates p  toe and is different in different cases.   In the  five dimensional 
world,  however,   it is possible,   without contradicting experiment,   to assume 
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the  following universal relation,   which seems  to us  the simplest and most 
natural: 

7?=0. (8) 

From the above and from   (6),  we obtain the equation e-Ap, which in the 
four-dimensional  theory corresponds  to  the   " equation of state"   of radiation: 
e =  3p. The energy-momentum  tensor  takes  the  form 

7^ = p (5«n ttv + guv). (9) 

In   (9)  we have  six  functions of the  type qA,   namely p{xp)   and u   (xp),   five 
of which,   in view of  (7),   are  independent  (s =  5,   as  it should). 

From  (8)  and  (4)   there  follows  the vanishing of the scalar curvature, 
R = 0,   i.e., the same property which exists  in Einstein and Infeld's  theory 
(where T     - 0). CXir  field equations can be written 

/?^v = -^/'(^v + 5alx»v). (10) 

Field equations of the type (10) seem to be a natural generalization of the 

field equations R      =0. Ihis generalization is different from the Einstein - 

deSitter generalization, ß„ = Kg,,,,   (k  being the " cosmological constant"), 
i*.*/       *-^ Li/Is ^ o 

which was recently exhaustively studied by Petrov. 
Ch the other hand, it follows from (9) that the " field of matter" p, u^ 

does not have a "rest mass" in the five-dimensional sense, and propagates 
along the five-dimensional " light -cone" dr    = 0. Therefore, the "particles" 
of this field (which are points of great density or else singularities of 
the field in the classical sense, or are particles in the quantum sense) 
must be " five-dimensional photons. " In particular, in a flat space, we have 

c2 (dx*)2 = c2 (dx°)2 - (dx1)2 - {dx2)2 - (dx3)2, 

which justifies our  interpretation of x    as   "proper  time" in  the  sense of 
the  four-dimensional   theory of relativity.  Qjr  interpretation of the  fifth 
coordinate of space differs   from  the one  given by  Fock       and Rumer       but 
leads   to  the  familiar interpretation of the motion of particles as  the motion 
of  " photons" in a  five-dimensional world. Yet,   as  far as we know,   all 
the papers written to date are based on the premises of Kaluza's      and 
Klein's      theories,   which are  somewhat more restricted than ours. 

We shall prove elsewhere that  it is possible  to build a quantum theory of 
elementary particles on  the classical basis here indicated. 

Ihe author considers  it his  duty  to   express his  sincere  gratitude  to 
Academician Fock  for his valuable comments during the conference of Polish 
physicists in Spa"ta,   which  considerably  improved  this paper. 
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